## **Google Earth Engine Evapotranspiration Flux EEFlux**



Ayse Kilic, University of Nebraska-Lincoln

Rick Allen, University of Idaho

Justin Huntington, Desert Research Institute

Members of the Landsat Science Team

Doruk Ozturk, University of Nebraska-Lincoln







### **EEFlux-Development Team**

**An Evapotranspiration Modeling Tool on Google Earth Engine** 













Ayse Kilic – University of Nebraska -- Professor, *Member Landsat Science Team*Justin Huntington – Desert Research Institute – Professor, *Member Landsat Science Team*Rick Allen -- University of Idaho – Professor, *Member Landsat Science Team* 

Doruk Ozturk- University of Nebraska - Developer
 Baburao Kamble - University of Nebraska - Developer
 Charles Morton - Desert Research Institute - Developer
 Ian Ratcliffe - University of Nebraska - Remote Sensing Analyst/Developer

Clarence Robison – Univ. Idaho – GIS technician

Ricardo Trezza – University of Idaho – Professor

David Thau, Google, Inc. – Earth Engine Advocate

Tyler Erickson, Google, Inc. – Earth Engine Advocate

Noel Gorelick, Google, Inc. – Earth Engine Advocate

Rebecca Moore, Google, Inc. – Manager, Earth Engine / Visionary



### WHAT IS EEF ux?

- Earth Engine Evapotranspiration Flux
- Began in 2012
- Uses the METRIC ET process (thermallydriven energy balance) as foundation
- Operates on the Google Earth Engine and Computational Cloud
- Automated operation and calibration

# Why an Evapotranspiration Tool on Google Earth Engine (EE)?

- EE has enormous computing and storage power
  - EE has essentially free access
  - EE has strong developer support
  - ET information is needed across the Global spectrum
  - Google supports and encourages developers to 'change the world' regarding access to spatial information on the environment, natural resources, conservation and climate change







### **The Earth Engine Environment**

Earth Engine JavaScript Language and Development "Playground"



Modesto, California (Central Valley) area Monitoring impacts of drought

### **Google Earth Engine Evapotranspiration Flux - EEFlux**

http://eeflux-level1.appspot.com

### **False Color Composite**













### **Google Earth Engine Evapotranspiration**

Flux - EEFlux

#### **ETrF--Fraction of Reference ET**



 $ET_rF = ET/ET_{ref}$ 

ET<sub>ref</sub> is reference ET- ASCE-Penman Monteith Alfalfa reference

### **Evapotranspiration Flux --- EEFlux**

#### **Albedo**













### **Evapotranspiration Flux --- EEFlux**

#### **NDVI--Normalized Difference Vegetation Index**













### **Evapotranspiration Flux --- EEFlux**

#### **NLCD - Landuse**



http://eeflux-level1.appspot.com

### **Evapotranspiration Flux --- EEFlux**

**Surface Temperature (K)** 





## BASE MAP- NATIONAL MALL, WASHINGTON, DC August 17, 2015



## ETrF MAP- NATIONAL MALL, WASHINGTON, DC August 17, 2015



## Data Resources Used by EEFlux



These data products are loaded and are functional on Earth Engine

http://eeflux-level1.appspot.com

### Data Resources Used by EEFlux

- Landsat 5/7/8 and MODIS
- Gridded Weather Data used to calibrate EEFlux energy balance and to calculate Reference ET used for Time Integration of ET:
  - NLDAS North American Land Data Assimilation System
     hourly weather data at 12 km available for > 30 year period for CONUS
  - GridMET daily, bias corrected weather data at 4 km available for > 30 year period for CONUS
  - Climate Forecast System Version 2, 6-hourly Product (CSFV2)—nonCONUS
  - Real Time Mesoscale Analysis (RTMA) downloaded daily to Earth Engine –
    used to fill in time gaps between NLDAS and today for processing recent
    Landsat imagery
- Soils -- Used to produce a daily time series of evaporation from <u>bare soil</u>.
  - Statsgo soils data is available for CONUS for top 0.15 m of soil
  - FAO soils data base & Global Soil database by Wei Shangguan et al. 2014)
- Landuse (NLCD) and Global Land Cover from European Space Agency: http://www.esa-landcover-cci.org/
- Digital Elevation Maps



Klamath, 2014

### ET between Landsat dates is scaled using Reference ET



## The Soil Surface Evaporation Component of the Google Earth Engine EEFlux App.

--- Evaporation from Bare Soil --- used to calibrate the EEFlux Evapotranspiration Surface Energy Balance to account for background Precipitation Effects on ET Evap. Coef. (K<sub>p</sub>)



### **Google Earth Engine Flux --- EEFlux**



## Earth Engine Evapotranspiration Flux Palo Verde Irrigation District

Blythe, California – Jan. – Dec. 2008

-- Landsat 5 imagery De



Univ. Nebraska-Lincoln, Univ. Idaho, Desert Research Institute

Computations are based on a complete surface energy balance (METRIC)





## **Water Literacy**

- The law conservation of mass dictates that only ET is lost from the liquid water system.
- An Informed, voting public needs to be water literate
- Having free, ready access to ET information is part of that literacy

## Why we have used Landsat?

- We know the importance of field scale ET maps for even the general Google community
- We recognize that water management and water rights began at the field level
- We want all Americans to have the opportunity and resources to be water literate

### **EEFlux Applications around the Globe**



We are testing EEFlux over the globe in a number of Countries and Conditions

### **EEFlux Applications around the Globe**



ET (right) around the city of El Raqqah, Syria on the Euphrates River in 2015, showing reduced ET following the takeover by rebels.

### 2015 METRIC/EEFLUX TRAINING at UC DAVIS, CA

ORGANIZER: CALIFORNIA DEPARTMENT OF WATER RESOURCES (27 PARTICIPANTS)



## **Next Steps**

### **Automation of:**

- Advanced Cloud detection and mitigation
- Time integration to produce monthly and annual ET volumes
- Mosaicing paths

### Release of a User Console

- Permit some degree of tuning (calibration utility)
- Save project information

## Level 2 EEFLux – Manual refinement of the Calibration ----Nearly ready for release. -- Will require licensing



RE-RUN EEFLUX

GO BACK

This table will be populated with values sampled from the locations of the red (hot) and blue (cold) locators on the map.

| Values              | Hot Pixel | Cold Pixel |
|---------------------|-----------|------------|
| Latitude            | 0         | 0          |
| Longitude           | 0         | 0          |
| NDVI                | 0.16      | 0.87       |
| Surface Temperature | 327.75    | 304.98     |
| Albedo              | 0.18      | 0.16       |
| Land Use            | 82        | 82         |
| Elevation           | 32.78     | 25.13      |

You can specify new ETrF values to use for the two locations selected for an improved calibration

ETrF hot ETrF cold 0.10 1.05

